Hypoxia modulates cell migration and proliferation in placenta-derived mesenchymal stem cells

J Thorac Cardiovasc Surg. 2017 Aug;154(2):543-552.e3. doi: 10.1016/j.jtcvs.2017.03.141. Epub 2017 Apr 13.

Abstract

Objectives: For more than a decade, stem cells isolated from different tissues have been evaluated in cell therapy. Among them, the human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were investigated extensively in the treatment of myocardial infarction. Recently, the human placenta-derived mesenchymal stem cells (hPD-MSCs), which are readily available from a biological waste, appear to be a viable alternative to hBM-MSCs.

Methods: C-X-C chemokine receptor type 4 (CXCR4) gene expression and localization were detected and validated in hPD-MSCs and hBM-MSCs via polymerase chain reaction and immunofluorescence. Subsequently, cell culture conditions for CXCR4 expression were optimized in stromal-derived factor-1 alpha (SDF1-α), glucose, and cobalt chloride (CoCl2) by the use of cell viability, proliferation, and migration assays. To elucidate the cell signaling pathway, protein expression of CXCR4, hypoxia-inducible factor-1α, interleukin-6, Akt, and extracellular signal-regulated kinase were analyzed by Western blot. CXCR4-positive cells were sorted and analyzed by florescence-activated cell sorting.

Results: CXCR4 was expressed on both hPD-MSCs and hBM-MSCs at the basal level. HPD-MSCs were shown to have a greater sensitivity to SDF-1α-dependent cell migration compared with hBM-MSCs. In addition, CXCR4 expression was significantly greater in both hPD-MSCs and hBM-MSCs with SDF-1α or CoCl2-induced hypoxia treatment. However, CXCR4+ hPD-MSCs population increased by 10-fold in CoCl2-induced hypoxia. In contrast, only a 2-fold increase was observed in the CXCR4+ hBM-MSCs population in similar conditions. After CoCl2-induced hypoxia, the CXCR4/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway was activated prominently in hPD-MSCs, whereas in hBM-MSCs, the CXCR4/phosphatidylinositol 3-kinase/Akt pathway was triggered.

Conclusions: Our current results suggest that hPD-MSCs could represent a viable and effective alternative to hBM-MSCs for translational studies in cardiocellular repair.

Keywords: CXCR4; SDF-1α; cardiac infarction; cell migration; cell proliferation; placenta-derived mesenchymal stem cell.

MeSH terms

  • Blotting, Western
  • Bone Marrow Cells
  • Cell Movement*
  • Cell Proliferation*
  • Cell Survival
  • Female
  • Humans
  • Hypoxia / physiopathology*
  • Mesenchymal Stem Cells / physiology*
  • Placenta / cytology
  • Pregnancy
  • Receptors, CXCR4 / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • CXCR4 protein, human
  • Receptors, CXCR4